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A reaction involving formal alkadiene insertion into a CCN
bond taking place via a catalytic photo-NOCAS mechanism was
developed. The process involves photoirradiation of an aceto-
nitrile solution containing 2,5-dimethyl-2,4-hexadiene (1), p-
dicyanobenzene (p-DCB), phenanthrene (Phen), and a catalytic
amount (20mol%) of tetra-n-butylammonium cyanide. The
reaction proceeds in the absence of noble metals and under mild
conditions (ambient temperature without bases). This is the first
example of a photo-NOCAS reaction in which a catalytic amount
of nucleophilic species is employed to promote the process.

Activation of essentially unreactive chemical bonds such as
aromatic CCN bonds1 has been actively studied in recent years
but it remains a challenging task.24 Reactions for this purpose
often require severe conditions and noble metal catalysts. As a
result, the development of CCN bond cleavage reactions that
proceed under mild and noble metal-free conditions is an
important goal from the viewpoint of synthetic utility.

Photochemical reactions serve as promising methods to
cleave inert bonds. Several years ago, Arnold and his co-workers
described photo-NOCAS (nucleophileolefin combination, ar-
omatic substitution) reactions of p-dicyanobenzene (p-DCB,
terephthalonitrile) and 2,5-dimethyl-2,4-hexadiene (1) in a
methanolic solution, which proceed via photochemically in-
duced ipso-substitution of aromatic cyano groups (eq 1).5,6
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These workers noticed that not only the typical photo-NOCAS
product 2 (82%) is produced in this reaction, but also the
cyanide containing adduct 3 (2%) is formed. Further inves-
tigations demonstrated that when an excess of potassium cyanide
is included in the reaction mixture 3 is generated in a high yield
(80%) (eq 2). This finding suggests that photo-NOCAS reaction
with free cyanide ion as a nucleophile is the true source of 3. It
has been proposed that cyanide ion, involved in the formation
of 3 in methanol (eq 1), comes from ipso-substitution on the
radical anion of p-dicyanobenzene (p-DCB●¹). Based on this
suggestion, we expected that incorporation of a catalytic amount

of cyanide ion in the photo-NOCAS reaction mixture would
enable the operation of a chain mechanism for formal alkadiene
insertion into aromatic CCN bonds.7
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In exploratory studies aimed at testing this proposal, an
acetonitrilewater (4:1) solution containing 1, p-DCB, phenan-
threne (Phen),8,9 and a catalytic amount (20mol%) of potassium
cyanide was photoirradiated for 20 h (Table 1, Entry 1). This
process afforded a complex product mixture that contained the
desired adduct 3 (19%) along with undesired products 46 (28,
3, and 8%, respectively).10,11 Recognizing that products 4 and 6
arise by the addition of water (or formally hydroxide ion) to the
cation radical of 1, we assumed that photoreactions in solutions
that did not contain water would increase the selectivity for
production of 3. However, potassium cyanide has a very low
solubility in anhydrous acetonitrile. As a result, photoirradiation
of a suspension of this cyanide salt in anhydrous acetonitrile did
not lead to formation of any recognizable products, and only
degradation of p-DCB was observed (Entry 2).

An optimal procedure for highly selective formation of the
formal insertion product 3 was uncovered. At first, 18-crown-6
(equimolar to potassium cyanide) was employed as an additive

Table 1. Photochemical CCN insertion reactiona
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Entry Cyanide Additive Solvent
Yieldsb/%

3 4 5 6

1 KCN ®
MeCN/
H2O

19 28 3 8

2c KCN ® MeCN 0 0 0 0
3 KCN 18-crown-6d MeCN 36 0 2 0
4 n-Bu4N+CN¹ ® MeCN 60 0 0 3
5 n-Bu4N+CN¹ MS4Ae MeCN 56 0 0 2
aConditions: 300-W high-pressure mercury lamp, Pyrex filter, 1
(75¯mol), p-DCB (25¯mol), Phen (25¯mol), cyanide (5¯mol),
in MeCN (4mL)H2O (1mL) or in MeCN (5mL), under Ar, rt,
20 h. bDetermined by 1HNMR analysis based on the amount of
p-DCB (for 3 and 4) and 1 (for 5 and 6) used. cPhotoreaction
was carried out in a suspension. d5¯mol. e100mg.
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to improve the solubility of potassium cyanide in dry acetonitrile
(Entry 3). Despite the high selectivity observed for the photo-
reaction in the presence of the crown ether, the process might not
be synthetically suitable because of the low yield (36%) of 3
formed and difficulties associated with separation of the crown
ether. Use of an acetonitrile-soluble cyanide source, tetra-n-
butylammonium cyanide, resolved this problem and led to an
optimal method for carrying out the photo-NOCAS reaction.
Thus, photoirradiation of a mixture of 1 and p-DCB in
anhydrous acetonitrile, containing tetra-n-butylammonium cya-
nide, led to formation of 3 in a 60% yield (Entry 4).13 When a
powder form of molecular sieve (MS) 4A was included to
remove trace amounts of water, no significant change in the
product distribution was observed (Entry 5).

A typical photo-NOCAS mechanistic pathway is respon-
sible for the formation of 3.5,6,10,12 The route is initiated by
single electron transfer (SET) from the singlet excited state of
Phen (1Phen*) to p-DCB (¦Get = ¹0.3 eV), which is then
followed by SET from 1 to Phen●+ (Scheme 1) to give 1●+

(¦Get = ¹0.4 eV).8 Addition of cyanide ion to 1●+ affords the
allylic radical intermediate A●, which couples with p-DCB●¹ to
form B¹. Regeneration of the aromatic ring affords the three-
component adduct 3 and regenerates cyanide ion. The formation
of the cyanide containing dimer 5 is a result of dimerization of
A●.11 Alcohols 4 and 6 are formed by similar reaction
mechanisms to those of 3 and 5, respectively, with water or
hydroxide ion serving as the nucleophile.

The process described above corresponds to a formal
alkadiene insertion reaction into an aromatic CCN bond.
Importantly, it takes place under mild (ambient temperature and
without base) and noble metal-free conditions. It also represents
the first example of the use of a catalytic amount of nucleophilic
species to promote photo-NOCAS reactions. We believe that this
type of catalytic photoreaction can also be applied to the other
photo-NOCAS reactions.5
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Scheme 1. Plausible mechanism for the formation of 3.
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